Part of the TeachMe Series

Femoral Shaft Fracture

star star star star star
based on 3 ratings

Original Author(s): Stefan Hudson
Last updated: October 26, 2019
Revisions: 6

Original Author(s): Stefan Hudson
Last updated: October 26, 2019
Revisions: 6

format_list_bulletedContents add remove

Introduction

Figure 1 – The posterior surface of a right femur

Femoral shaft fractures are common, especially in high-energy trauma, with an incidence of around 4 per 10000 person-years.

The femur is the longest bone in the body and a highly vascularised bone, due to its role in haematopoesis. The bone is supplied by penetrating branches of the profunda femoris artery, therefore large volumes of blood (up to 1500ml) can be lost when fractured.

In all groups, the injury may be open or associated with neurovascular injury. Femoral shaft fractures are most commonly seen in:

  • High-energy trauma
  • Fragility fractures in the elderly (low-energy trauma)
  • Pathological fractures (e.g. metastatic deposits, osteomalacia)
  • Bisphosphonate-related fractures*

*Classically this is a transverse fracture in the proximal femur

Clinical Features

The patient will present with pain in the thigh and/or hip or knee pain, and will be unable to weight bear. In severe cases, an obvious deformity will be apparent from the end of the bed.

Ensure that you assess the skin, which may be open or threatened (tethered, white, non-blanching). The proximal fragment is invariably pulled into flexion and external rotation (by iliopsoas and gluteus medius & minimus, respectively), which can further tent the skin.

Ensure to perform a full neurovascular examination of the lower limbs to check for any vascular or peripheral nerve injury, as well as a thorough secondary survey for associated injuries.

*Referred pain is particularly common in the elderly population with femoral shaft fractures

Classification

The Winquist and Hansen Classification can be used to classify the degree of comminution to femoral shaft fractures:

  • Type 0 – No comminution
  • Type I – Insignificant amount of comminution
  • Type II – Greater than 50% cortical contact
  • Type III – Less than 50% cortical contact
  • Type IV – Segmental fracture with no contact between proximal and distal fragment

Differential Diagnosis

If the mechanism was high-energy, ensure you formally assess for other orthopaedic injuries. Commonly involved areas that may have fractured include the ankle, tibial shaft, tibial plateau, pelvis, and spinal fractures.

Investigations

Patients presenting following a major trauma should be investigated and managed as per the ATLS protocol.

Routine urgent bloods, including a coagulation and Group and Save, should be sent. Where a pathological cause is suspected, further work-up bloods, such as a serum calcium, may be warranted.

Imaging

A plain film radiograph is the only routine imaging that is often needed (Fig. 2), and should include an AP and lateral of the entire femur, including the hip and knee

Further imaging via CT scanning may be warranted if polytrauma is suspected, to further assess intra-articular or femoral neck fractures.

Figure 2 – An AP view of plain film radiograph, demonstrating a mid-shaft femoral fracture

Management

As per ATLS guidelines, an A to E assessment is vital, stabilising the patient and ensuring appropriate fluid resuscitation.

Ensure the patient has adequate pain relief, often requiring opioid analgesia +/- regional blockade (such as a fascia iliaca block). Any open fractures will need to be managed appropriately (as discussed here), including antibiotic prophylaxis, tetanus and medical photography.

A femoral shaft fracture requires immediate reduction and immobilisation; reducing fractures to near-anatomic alignment using in-line traction will ensure appropriate haematoma formation (/bone healing), as well as reducing pain.

Traction splinting, such as a Kendrick traction splint*, are used in suspected or isolated fractures of the mid-shaft femur (acts to hold the femur in correct position against action of the large thigh muscle mass).

Most femoral shaft fractures require surgery, however long-leg casts may be indicated in undisplaced femoral shaft fractures in patients with significant co-morbidities.

*Contraindications for traction splinting include hip or pelvic fractures, supracondylar fractures, fractures of ankle or foot, or partial amputation.

Surgical Management

Femoral fractures should be surgically fixed within 24-48 hours, although sooner if an open fracture.

Most isolated cases can be treated with an antegrade intramedullary nail*, which have around a 98% union rate and a low rate of post-operative complications.

External fixation (with subsequent delayed conversion to intramedullary nail) may be used in unstable polytrauma or open fractures, to ensure the patient is physiologically optimised prior to definitive fixation.

*A retrograde intramedullary nail may be used if concurrent lower limbs fractures or if the patient has a hip replacement in situ)

Complications

Common complications following femoral shaft fracture include:

  • Nerve injury or vascular injury
    • Pudendal nerve injury (around 10%) or femoral nerve injury (rare)
  • Mal-union (or rotational mal-alignment), delayed union, or non-union
    • Mal-union occurs in around 30% and 10% of proximal and distal fractures respectively
    • Non-union occurs <10% of cases, however risk is increased with smoking and increased post-operative use of NSAIDs,
  • Infection, especially with open fractures
  • Fat embolism

More long-term problems include hip flexor or knee extensor weakness, limb stiffness, or re-fracture.

Prognosis

Patients who survive the initial trauma associated with the injury typically heal well.

Early mobilisation following intra-medullary nailing greatly reduces complications. Bilateral femur fractures have higher rates of pulmonary complications and increased mortality rates, compared to unilateral fractures.

Patients >60yrs have a mortality rate of 17% and overall complication rate of 54%.

Key Points

  • Femoral shaft fractures are common, especially in high-energy trauma or as pathological fractures in the elderly
  • Patients present usually following trauma, with pain in the thigh and unable to weight bear
  • All suspected cases require a plain film radiograph, both lateral and AP views
  • Most cases will require surgical management, with most isolated cases treated with an antegrade intra-medullary nail